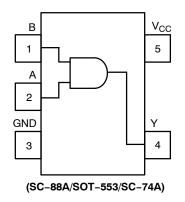
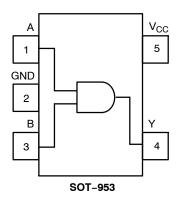

onsemi

Single 2-Input AND Gate MARKING DIAGRAMS **NL17SZ08** The NL17SZ08 is a single 2-input AND Gate in tiny footprint SC-88A XX M= DF SUFFIX packages. CASE 419A Features • Designed for 1.65 V to 5.5 V V_{CC} Operation • 2.7 ns t_{PD} at $V_{CC} = 5 V (typ)$ SC-74A XXX M **DBV SUFFIX** • Inputs/Outputs Overvoltage Tolerant up to 5.5 V CASE 318BQ • IOFF Supports Partial Power Down Protection Source/Sink 24 mA at 3.0 V SOT-553 • Available in SC-88A, SC-74A, SOT-553, SOT-953 and UDFN6 **XV5 SUFFIX** Packages CASE 463B • Chip Complexity < 100 FETs • NLV Prefix for Automotive and Other Applications Requiring SOT-953 Unique Site and Control Change Requirements; AEC-Q100 **P5 SUFFIX** Qualified and PPAP Capable CASE 527AE • These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant UDFN6

Figure 1. Logic Symbol




ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

Semiconductor Components Industries, LLC, 2011 March, 2022 – Rev. 26

NL17SZ08

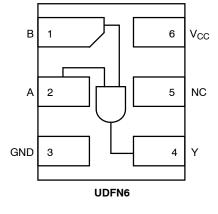


Figure 2. Pinout (Top View)

PIN ASSIGNMENT

(SC-88A/SOT-553/SC-74A)

Pin	Function
1	В
2	А
3	GND
4	Y
5	V _{CC}

PIN ASSIGNMENT (SOT-953)

Function
А
GND
В
Y
V _{CC}

PIN ASSIGNMENT (UDFN)

Pin	Function
1	В
2	A
3	GND
4	Y
5	NC
6	V _{CC}

FUNCTION TABLE

Ing	Output Y = AB	
Α	В	Y
L	L	L
L	Н	L
Н	L	L
н	Н	Н

MAXIMUM RATINGS

Symbol	CI	naracteristics	Value	Unit
V_{CC}	DC Supply Voltage	SC-88A (NLV) 2-74A, SC-88A, SOT-553, SOT-953, UDFN6	-0.5 to +7.0 -0.5 to +6.5	V
V _{IN}	DC Input Voltage	SC-88A (NLV) 2-74A, SC-88A, SOT-553, SOT-953, UDFN6	−0.5 to +7.0 −0.5 to +6.5	V
V _{OUT}	DC Output Voltage SC-88A (NLV)	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +7.0 -0.5 to +7.0	V
	DC Output Voltage SC-74A, SC-88A, SOT-553, SOT-953, UDFN6	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	$\begin{array}{c} -0.5 \text{ to } V_{CC} + 0.5 \\ -0.5 \text{ to } +6.5 \\ -0.5 \text{ to } +6.5 \end{array}$	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current	±50	mA	
I _{CC} or I _{GND}	DC Supply Current per Supply Pin	±100	mA	
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Ca	se for 10 secs	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88A SC-74A SOT-553 SOT-953 UDFN6	377 320 324 254 154	°C/W
P _D	Power Dissipation in Still Air	SC-88A SC-74A SOT-553 SOT-953 UDFN6	332 390 386 491 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Applicable to devices with outputs that may be tri-stated.
Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

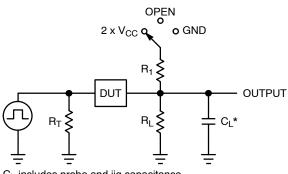
Symbol	Chara	Characteristics			
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time SC-88A (NLV)	V_{CC} = 3.0 V to 3.6 V V_{CC} = 4.5 V to 5.5 V	0 0	100 20	ns/V
	Input Rise and Fall Time SC-74A, SC-88A, SOT-553, SOT-953, UDFN6	$\begin{array}{c} V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \end{array}$	0 0 0 0	20 20 10 5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

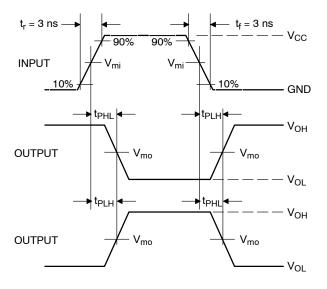
			Vcc	T	A = 25°	С	–55°C ≤ T	[′] A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
VIH	High-Level Input		1.65 to 1.95	0.75 x V _{CC}	-	-	0.75 x V _{CC}	-	V
	Voltage (NLV)		2.3 to 5.5	0.70 x V _{CC}	-	-	0.70 x V _{CC}	_	1
	High-Level Input		1.65 to 1.95	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-	V
	Voltage		2.3 to 5.5	$0.70 \times V_{CC}$	-	-	$0.70 \times V_{CC}$	-	
V _{IL}	Low-Level Input		1.65 to 1.95	-	-	$0.25 \times V_{CC}$	-	$0.25 \times V_{CC}$	V
	Voltage (NLV)		2.3 to 5.5	-	-	$0.30 \times V_{CC}$	-	$0.30 \times V_{CC}$	
	Low-Level Input		1.65 to 1.95	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
	Voltage		2.3 to 5.5	-	-	$0.30 \times V_{CC}$	-	$0.30 \times V_{CC}$	
V _{OH}	High-Level Output Voltage	$\begin{array}{l} V_{IN} = V_{IH} \ \text{or} \ V_{IL} \\ I_{OH} = -100 \ \mu\text{A} \\ I_{OH} = -4 \ \text{mA} \\ I_{OH} = -8 \ \text{mA} \\ I_{OH} = -12 \ \text{mA} \\ I_{OH} = -16 \ \text{mA} \\ I_{OH} = -24 \ \text{mA} \\ I_{OH} = -32 \ \text{mA} \end{array}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.4 2.7 2.5 4.0	- - - - -	V _{CC} - 0.1 1.29 2.2 2.4 2.3 3.8		V
V _{OL}	Low-Level Output Voltage		1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5		- 0.08 0.2 0.22 0.28 0.38 0.38	0.1 0.24 0.3 0.4 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.4 0.55 0.55	V
I _{IN}	Input Leakage Cur- rent	V _{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	-	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	μΑ
ICC	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	-	-	1.0	-	10	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

			$V_{CC} \qquad T_{A} = 25^{\circ}C \qquad -55^{\circ}C \le T_{A} \le 125^{\circ}C$			ղ ≤ 125°C			
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
t _{₽LH} ,	Propagation Delay, A to Y	R_L = 1 M Ω , C_L = 15 pF	1.65 to 1.95	-	6.3	12	-	12.7	ns
t _{PHL}	(Figures 3 and 4)	R_L = 1 M Ω , C_L = 15 pF	2.3 to 2.7	-	3.4	7.0	-	7.5	
		R_L = 1 MΩ, C_L = 15 pF	3.0 to 3.6	-	2.6	4.7	-	5.0	
		$R_L = 500 \ \Omega$, $C_L = 50 \ pF$		-	3.3	5.2	-	5.5	
		R_L = 1 MΩ, C_L = 15 pF	4.5 to 5.5	-	2.2	4.1	-	4.4	
		$R_L = 500 \ \Omega, \ C_L = 50 \ pF$		_	2.7	4.5	-	4.8	

CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V _{CC} = 3.3 V, V _{IN} = 0 V or V _{CC} 10 MHz, V _{CC} = 5.5 V, V _{IN} = 0 V or V _{CC}	9 11	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

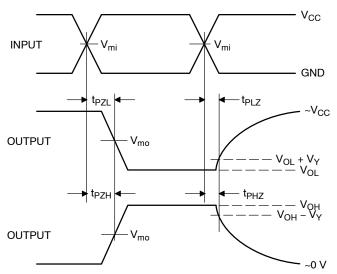

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f = 1 MHz

Figure 3. Test Circuit

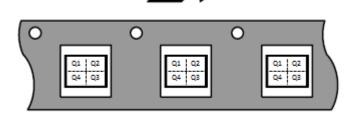
Switch Position	C _L , pF	R_{L}, Ω	R ₁ , Ω
Open	See AC Character	istics Tat	ble
$2 \times V_{CC}$	50	500	500
GND	50	500	500
	Position Open 2 x V _{CC}	Position See AC Character Open See AC Character 2 x V _{CC} 50	Position See AC Characteristics Tat 0pen See AC Characteristics Tat 2 x V _{CC} 50

X = Don't Care

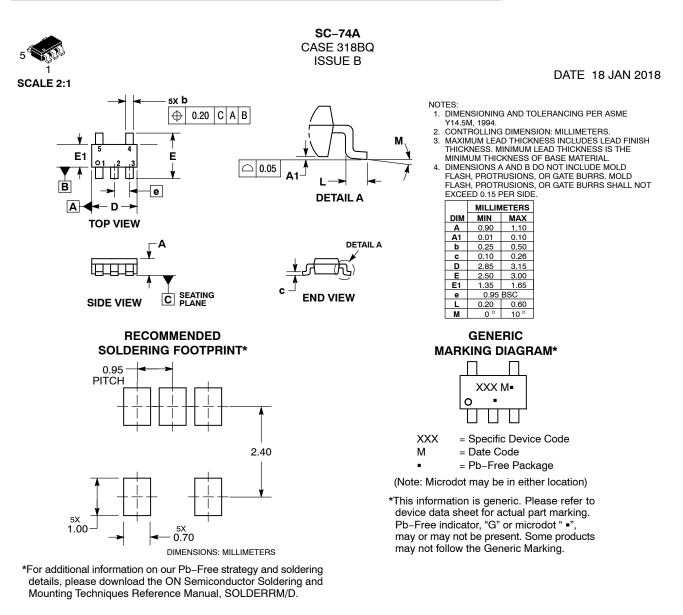
Figure 4. Switching Waveforms

		Vm		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3

DEVICE ORDERING INFORMATION

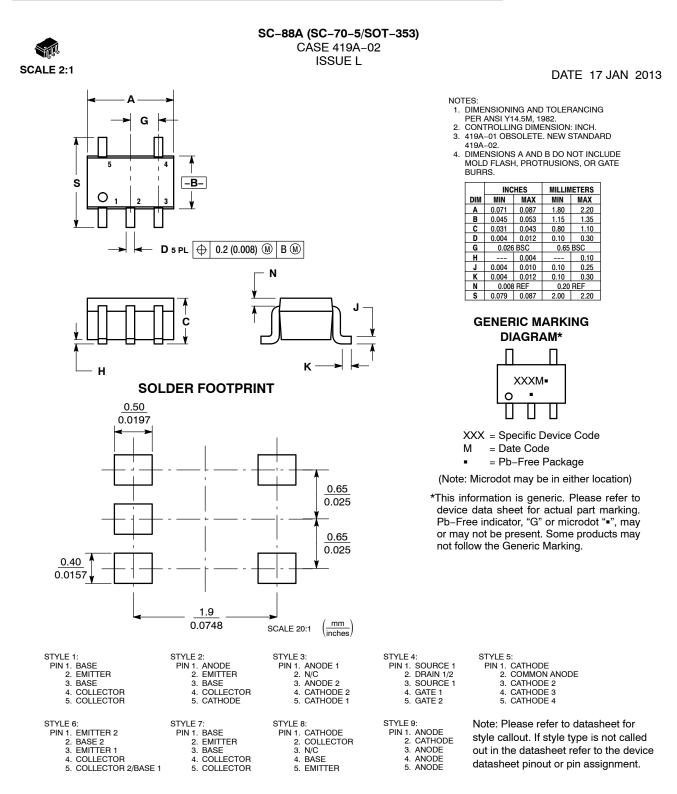

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL17SZ08DFT2G	SC-88A	L2	Q4	3000 / Tape & Reel
NLV17SZ08DFT2G*	SC-88A	L2	Q4	3000 / Tape & Reel
NL17SZ08DFT2G-F22038**	SC-88A	L2	Q4	3000 / Tape & Reel
NL17SZ08DBVT1G	SC-74A	AH	Q4	3000 / Tape & Reel
NL17SZ08XV5T2G	SOT-553	L2	Q4	4000 / Tape & Reel
NL17SZ08P5T5G	SOT-953	E (Rotated 180° CW)	Q2	8000 / Tape & Reel
NL17SZ08MU1TCG	UDFN6, 1.45 x 1.0, 0.5P	D (Rotated 180° CW)	Q4	3000 / Tape & Reel
NL17SZ08MU3TCG	UDFN6, 1.0 x 1.0, 0.35P	P (Rotated 180° CW)	Q4	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

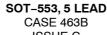

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. ** Please refer to NLV specifications for this device.

Pin 1 Orientation in Tape and Reel

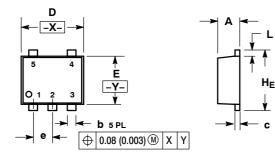
Direction of Feed

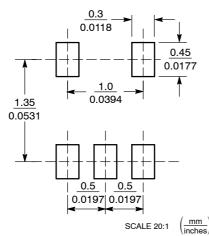


DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-74A		PAGE 1 OF 1		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or the					


DOCUMENT NUMBER:	98ASB42984B	8ASB42984B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-88A (SC-70-5/SOT-35	SC-88A (SC-70-5/SOT-353)			

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.




SCALE 4:1

ISSUE C

RECOMMENDED **SOLDERING FOOTPRINT***

NOTES:

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е	0.50 BSC				0.020 BSC)
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

GENERIC **MARKING DIAGRAM***

XXM-

XX = Specific Device Code M = Date Code

= Pb-Free Package

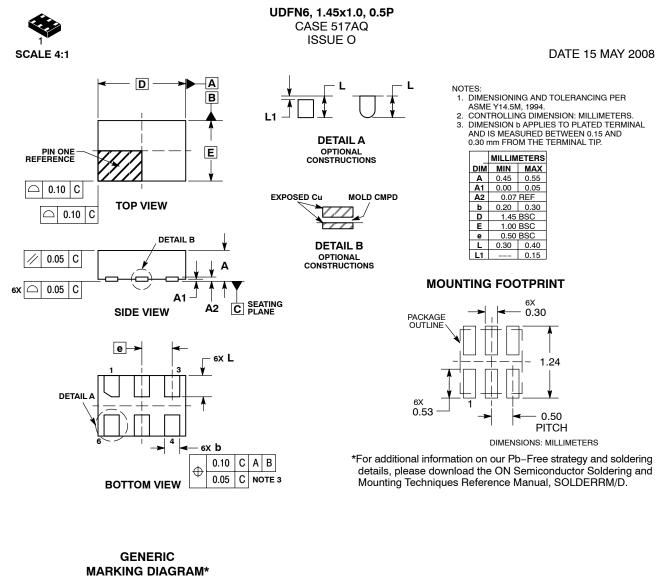
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. COLLECTOR	4. CATHODE 3	4. CATHODE 2	4. GATE 1	4. COLLECTOR
5. COLLECTOR	5. CATHODE 4	5. CATHODE 1	5. GATE 2	5. CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Print versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		
NEW STANDARD:			
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 2


DOCUMENT NUMBER: 98AON11127D

PAGE 2 OF 2

ISSUE	REVISION	DATE
Α	ADDED STYLES 3–9. REQ. BY D. BARLOW	11 NOV 2003
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product culd create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

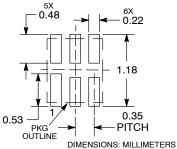
onsemi

- X = Specific Device Code
- M = Date Code
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

DOCUMENT NUMBER:	98AON30313E Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	UDFN6, 1.45x1.0, 0.5P PAGE 1		PAGE 1 OF 1	
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential damages. onsemi does not convey any license under its pattent rights nor the rights of others.				

DUSem

SCALE 4:1


UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O**

DATE 18 MAY 2011

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN A DE ADD & OR MULTICAL TERMINAL TR
- AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

BURRS AND MOLD FL				
	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00 0.05			
A3	0.13 REF			
b	0.12 0.22			
D	1.00 BSC			
E	1.00 BSC			
е	0.35 BSC			
L	0.25 0.35			
L1	0.30	0.40		

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

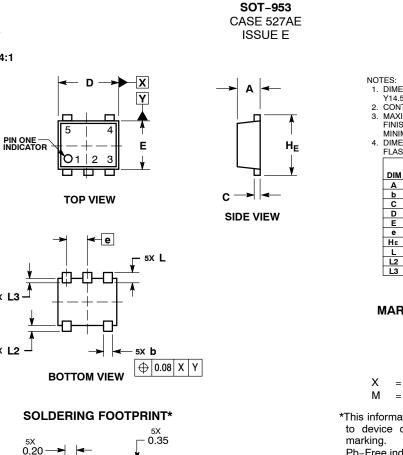
GENERIC **MARKING DIAGRAM***

X = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56787E Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	UDFN6, 1x1, 0.35P PAGE		PAGE 1 OF 1		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

SCALE 4:1


5X L3

5X L2

PACKAGE OUTLINE

0.35 PITCH

DATE 02 AUG 2011

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.34	0.37	0.40	
b	0.10	0.15	0.20	
С	0.07	0.12	0.17	
D	0.95	1.00	1.05	
E	0.75	0.80	0.85	
е		0.35 BS	С	
ΗE	0.95	1.00	1.05	
L	0.175 REF			
L2	0.05	0.10	0.15	
L3			0.15	


GENERIC **MARKING DIAGRAM***

= Specific Device Code

= Month Code

*This information is generic. Please refer to device data sheet for actual part

Pb-Free indicator, "G" or microdot " .", may or may not be present.

L

1.20

DOCUMENT NUMBER:	98AON26457D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	PTION: SOT-953		PAGE 1 OF 1					
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or	ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>NL17SZ08DFT2</u> <u>NL17SZ08DFT2G</u> <u>NL17SZ08XV5T2</u> <u>NL17SZ08XV5T2G</u> <u>NL17SZ08P5T5G</u> <u>NLV17SZ08DFT2G</u> NL17SZ08DBVT1G NL17SZ08MU1TCG