

USB Type-C Port Controller

General Description

EZ-PD™ CCG5C is a one-port USB Type-C controller that complies with the latest USB Type-C and Power Delivery (PD) specifications. CCG5C provides a complete USB Type-C and USB PD port control solution for PCs and notebooks. CCG5C includes a 32-bit, 48-MHz Arm® Cortex®-M0 processor with 128 KB flash and integrates one complete Type-C Transceiver including the Type-C termination resistors R_P, R_D, and R_{D-DB}. CCG5C is available in a 40-pin QFN package.

Applications

- PCs and notebooks
- Thunderbolt hosts and devices

Features

Type-C and USB-PD Support

- Integrated USB Power Delivery (USB-PD) 3.0 support
- Integrated UFP^[1] (R_D) and current sources for DFP^[2] (R_P)

 □ Fast Role Swap
 - Extended data messaging
- Integrated dead battery termination
- Integrated VCONN FETs with overcurrent protection (OCP) to power electronically marked cable assembly (EMCA) cables
- Integrated high-voltage LDO, operational up to 21.5 V
- Integrated USB 2.0 Analog Mux
- Integrated SBU Analog Mux
- Integrated USB Charger Detect blocks
 - □ Battery Charging (BC) v1.2, Apple Charging (both source only)
- Integrated overvoltage protection (OVP) and overcurrent protection (OCP) on VBUS
- Gate Driver, tolerant to 24 V, to drive external VBUS PFET on the consumer and provider path
- Configurable hardware-controlled VBUS overvoltage protection and overcurrent protection
- VBUS high-side current-sense amplifier capable of measuring current across a 10-mΩ series resistance

32-bit MCU Subsystem

- 48-MHz Arm Cortex-M0 CPU
- 128-KB Flash
- 12-KB SRAM

Integrated Digital Blocks

- Up to two integrated timers and counters to meet response times required by the USB-PD protocol
- Four runtime serial communication blocks (SCBs) with reconfigurable I²C, SPI, or UART functionality

Clocks and Oscillators

■ Integrated oscillator eliminating the need for an external clock

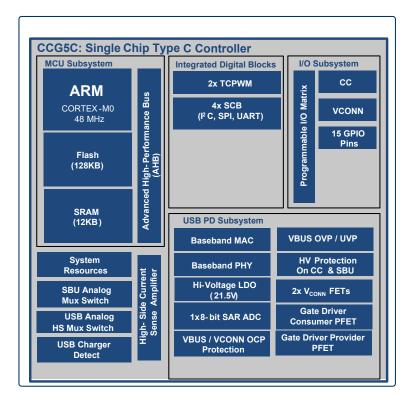
Low-Power Operation

■ 2.75 V to 21.5 V operation

Hot-Swappable I/Os

■ I²C pins from SCB1 and CC1, CC2 pins are hot-swappable

Packages


- 6.0 mm × 6.0 mm × 0.6 mm, 40-pin QFN
- Supports industrial temperature range (-40 °C to +85 °C)

Notes

- 1. UFP refers to Power Sink.
- 2. DFP refers to Power Source.

Logic Block Diagram

Contents

Functional Overview	
USB-PD Subsystem (SS)	
CPU and Memory Subsystem	
Power System Overview	7
Peripherals	8
GPIO	
Pinouts	9
Application Diagram	13
Electrical Specifications	
Absolute Maximum Ratings	
Device-Level Specifications	15
Digital Peripherals	
System Resources	19
Ordering Information	
Ordering Code Definitions	

Packaging	Z <i>1</i>
Acronyms	
Document Conventions	
Units of Measure	29
References and Links to Applications Collateral	30
Document History Page	31
Sales, Solutions, and Legal Information	32
Worldwide Sales and Design Support	32
Products	32
PSoC® Solutions	32
Cypress Developer Community	32
Technical Support	

Functional Overview

USB-PD Subsystem (SS)

USB-PD Physical Layer

The CCG5C USB-PD subsystem consists of the USB-PD physical layer (PHY) block and supporting circuits. The PHY block consists of a transmitter and receiver that communicates using BMC and 4b/5b encoded/decoded data over the CC channel based on the PD 3.0 specification. All communication is half-duplex. The PHY block practices collision avoidance to minimize communication errors on the channel.

Additionally, the CCG5C USB-PD block includes all termination resistors (R_P and R_D) and their switches as required by the USB Type-C specification. R_P and R_D resistors are required for connection detection, plug orientation detection, and for establishing the USB source/sink roles.

The integrated R_P resistor enables CCG5C to be configured as a downstream facing port (DFP). The R_P resistor is implemented as a current source and can be programmed to support the complete range of current capacity on VBUS defined in the USB Type-C specification.

The R_D resistor is used to identify CCG5C as an upstream facing port (UFP) in a dual-role power (DRP) application. When the device is not powered, the Dead Battery (DB) $/R_D$ resistor on CC pins is required for dead battery termination detection and charging.

To support the latest USB-PD 3.0 specification, CCG5C includes Fast Role Swap (FRS). The FRS feature enables externally powered docks and hubs to rapidly switch to bus power when their external power supply is removed. CCG5C also supports FRS detection in Deep Sleep mode.

For more details about FRS, refer to Section 6.3.17 in the USB-PD 3.0 specification.

CCG5C is designed to be fully interoperable with revision 3.0 and 2.0 of the USB Power Delivery specification.

CCG5C supports Extended Messages containing data of up to 260 bytes. The Extended Messages will be larger than expected by the USB-PD 2.0 hardware. To accommodate systems based on Revision 2.0, a Chunking mechanism is implemented such that messages are limited to Revision 2.0 sizes unless it is discovered that both systems support longer message lengths.

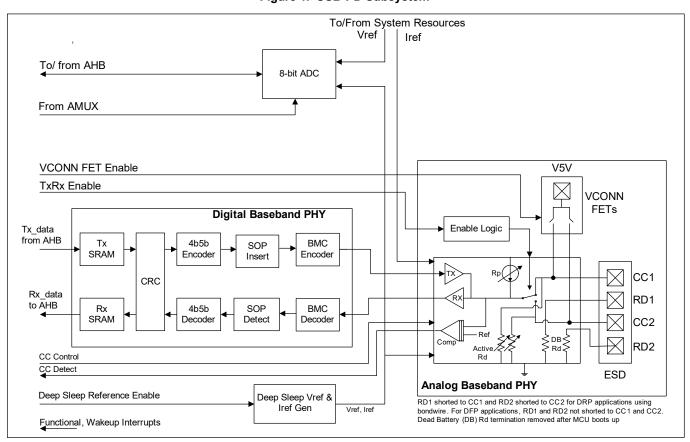
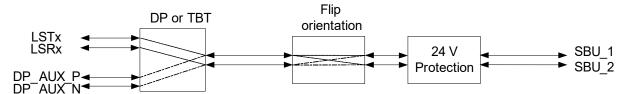


Figure 1. USB-PD Subsystem

VCONN FET

CCG5C has a power supply input, V5V, for providing power to EMCA cables through integrated VCONN FETs. There are two VCONN FETs to power either CC1 or CC2 pins. These FETs can provide 1.5-W power over VCONN on CC1 and CC2 pins for active EMCA cables. CCG5C also includes overcurrent protection (OCP) on VCONN.

ADC


The USB-PD subsystem contains one 8-bit successive approximation register analog-to-digital converter (SAR ADC). The ADC includes an 8-bit digital-to-analog converter (DAC) and a comparator. The DAC output forms the positive input of the

comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses, an internal bandgap voltage, and an internal voltage proportional to the absolute temperature. All GPIOs on the chip have access to the ADC through the chip-wide analog mux bus. CC1 and CC2 pins are not available to connect to the mux bus.

SBU Mux

CCG5C integrates a SBU 4x2 mux that enables selection between the DisplayPort or Thunderbolt alternate mode and Type-C orientation as shown in Figure 2. Type-C facing SBU pins are protected from accidental short to high-voltage VBUS.

Figure 2. CCG5C SBU Crossbar Switch Block Diagram

USB 2.0 Mux

The HS mux contains a 2×2 cross bar switch to route the system D± lines to the Type-C top or bottom port based on the CC (Type-C plug) orientation. Unused D± top or bottom lines can be connected to a UART (Debug) port. The maximum operating frequency of UART must be 1 Mbps.

The USB 2.0 mux also contains charger detection/emulation for detecting USB BC 1.2 and Apple terminations. The charger detection block is connected to D± from the system as shown in Figure 3.

To meet the HS eye diagram requirements with sufficient margin, follow these guidelines:

- Trace lengths of HS signals shall be no more than 2 inches from the USB 2.0 Host to the CCG5C device. Similarly, trace length from the CCG5C device to Type-C connector pins shall be no more than 2 inches.
- The differential impedance across the DP/DM signal traces shall be $90~\Omega$.
- Trace width shall be 6 mils.
- Air gap (distance between lines) shall be 8 mils.

Increasing the trace length by more than two inches on either side of the CCG5C device degrades the HS eye diagram.

Figure 3. CCG5C DP/DM Switch Block Diagram

Overvoltage and Undervoltage Protection on VBUS

CCG5C implements an undervoltage/overvoltage (UVOV) detection circuit for the VBUS supply. The threshold for OV and UV detection can be set independently. Both UV and OV detector have programmable thresholds and is controlled by the firmware.

Overcurrent Protection on VBUS

CCG5C integrates a high-side current sense amplifier to detect overcurrent on the VBUS. Overcurrent protection is sensed using an external 10-m Ω sense resistor connected between the CSP and CSN pins. The OCP detector threshold is programmable and controlled by the firmware.

VBUS Discharge

CCG5C also has integrated VBUS discharge circuit. It is used to discharge VBUS to meet the USB-PD specification timing on a detach condition and negative voltage transition.

VBUS Regulator

CCG5C can operate from two power supplies – VSYS and VBUS. CCG5C integrates the regulator (that supports up to 21.5 V) to derive operating supply voltage. The VSYS always takes priority over VBUS. In the absence of VSYS, the regulator powers CCG5C from VBUS.

Gate Driver for VBUS PFET on Consumer and Provider Path

CCG5C has an integrated PFET gate driver to drive external PFETs on the VBUS consumer and provider path. The gate

driver can drive only low or high-Z, thus requiring an external pull-up. This pin is VBUS voltage-tolerant.

Charger Detect

CCG5C integrates battery charger emulation and detection for USB BC 1.2 and Apple Charging.

High-Voltage-Tolerant SBU and CC Lines

The chip has high-voltage-tolerant SBU and CC lines. In the case of SBU/CC short to VBUS through connectors, these lines will be protected internally.

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in EZ-PD CCG5C is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating.

The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for EZ-PD CCG5C has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The EZ-PD CCG5C device has a 128-KB flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver two wait-states (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. A part of the flash module can be used to emulate EEPROM operation if required.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

SRAM

CCG5C has 12 KB SRAM.

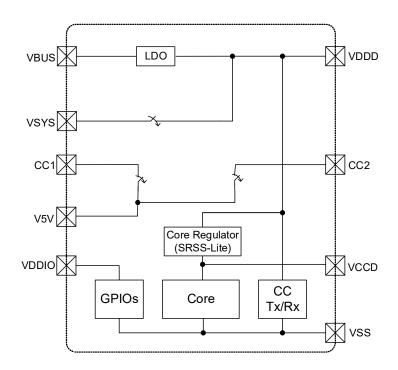

Power System Overview

Figure 4 provides an overview of the EZ-PD CCG5C power system. CCG5C can operate from two possible external supply sources: VBUS (4–21.5 V) or VSYS (2.75 to 5.5 V). The VBUS supply is regulated inside the chip with a LDO. The switched supply, V_{DDD} , is used directly inside some analog blocks and further regulated down to V_{CCD} , which powers majority of the core. CCG5C has two different power modes: Active and Deep Sleep. Transitions between these power modes are managed by the power system. A separate power domain, VDDIO, is provided for the GPIOs. The VDDD and VCCD pins, both outputs of regulators, are brought out for connecting a 1- μ F and 0.1- μ F capacitor respectively for the regulator stability only. The VCCD pin is not supported as a power supply. VDDD can source 2 mA (max) for external load. In CCG5C, VDDD shall be shorted to VDDIO on PCB.

Table 1. CCG5C Power Modes

Mode	Description							
RESET	Power is valid and XRES is not asserted. An internal reset source is asserted or Sleep Controller is sequencing the system out of reset.							
ACTIVE	Power is valid and CPU is executing instructions.							
DEEP SLEEP	Main regulator and most blocks are shut off. Deep Sleep regulator powers logic, but only low-frequency clock is available.							

Figure 4. EZ-PD CCG5C Power System

Peripherals

CCG5C has four SCBs, which can each implement an I²C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multimaster and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I^2C peripheral is compatible with the I^2C Standard mode, Fast mode, and Fast Mode Plus devices as defined in the NXP I^2C bus specification and user manual (UM10204). The I^2C bus I/O is implemented with GPIO in open-drain modes. The I^2C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. The required Rise and Fall times for different I^2C speeds are guaranteed by using appropriate pull-up resistor values depending on V_{DDD} , bus capacitance, and resistor tolerance.

For detailed information on how to calculate the optimum pull-up resistor value for your design, refer to the UM10204 I²C bus specification and user manual (the latest revision is available at www.nxp.com).

CCG5C is not completely compliant with the I²C spec for the following:

- Only SCB1 is overvoltage-tolerant. SCB2, SCB3, and SCB4 GPIO cells are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast Mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast mode and Fast Mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common Rx and Tx lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

Timer/Counter/PWM Block (TCPWM)

CCG5C has up to two TCPWM blocks. Each TCPWM block consists of four 16-bit counters with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

GPIO

CCG5C has 15 GPIOs that includes the SCB and SWD pins, which can also be used as GPIOs. The I²C pins from only SCB 1 are overvoltage-tolerant. The GPIO block implements the following:

- Seven drive strength modes:
 - □ Input only
 - □ Weak pull-up with strong pull-down
 - ☐ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - □ Open drain with strong pull-up
 - $\ensuremath{\square}$ Strong pull-up with strong pull-down
 - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt-related noise control to improve FMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves. Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for CCG5C since it has five ports).

Pinouts

Table 2. Pinout for CYPD5126-40LQXIT

Group Name	Pin Name	Port	Pin	Description
USB Type-C	CC1	Analog	9	Connect to Type-C CC1 pin. Filter noise with 390-pF cap to GND.
	CC2	Analog	7	Connect to Type-C CC2 pin. Filter noise with 390-pF cap to GND.
Mux	DPLUS_SYS	Analog	23	Connect to USB 2.0 DP from Host side.
	DMINUS_SYS	Analog	24	Connect to USB 2.0 DM from Host side.
	UART_TX/GPIO	P4.0	29	Connect to Debug port UART_TX (optional) from host side or can be used as GPIO. If unused, leave floating.
	UART_RX/GPIO	P4.1	30	Connect to Debug port UART_RX (optional) from host side or can be used as GPIO. If unused, leave floating.
	DPLUS_BOT	Analog	26	Connect to Type-C DP1 pin. Keep trace length less than 2 inches.
	DMINUS_BOT	Analog	25	Connect to Type-C DM1 pin. Keep trace length less than 2 inches.
	DMINUS_TOP	Analog	27	Connect to Type-C DM2 pin. Keep trace length less than 2 inches.
	DPLUS_TOP	Analog	28	Connect to Type-C DP2 pin. Keep trace length less than 2 inches.
	SBU2	Analog	34	Connect to Type-C SBU2 pin.
	SBU1	Analog	35	Connect to Type-C SBU1 pin.
	AUX_P	Analog	36	Connect to Auxiliary Signal P from DisplayPort Controller. If not used, leave floating.
	AUX_N	Analog	37	Connect to Auxiliary Signal N from DisplayPort Controller. If not used, leave floating.
	LSTX	Analog	38	Thunderbolt Link Management UART Rx. If not used, leave floating.
	LSRX	Analog	39	Thunderbolt Link Management UART Tx. If not used, leave floating.
VBUS Control	VBUS_P_CTRL	Analog	11	Pin for enabling/disabling Provider Side PFET 0: Path ON High-Z: Path OFF
	VBUS_C_CTRL	Analog	12	Pin for enabling/disabling Consumer Side PFET 0: Path ON High-Z: Path OFF
VBUS OCP	CSP	Analog	1	Current Sense Positive Input
	CSN	Analog	40	Current Sense Negative Input

Table 2. Pinout for CYPD5126-40LQXIT (continued)

GPIOs and Serial Interfaces	SWD_IO/AR_RST/GPIO SWD_CLK/I2C_CFG_EC/ GPIO I2C_SDA_SCB2_TBT/GPIO	P1.4 P1.0	6 2	SWD I/O/GPIO SWD Clock/ I ² C config line. I ² C config line is used to select the I ² C address of HPI interface. The state of line decides the 7 bit I ² C address for HPI.
		P1.0	2	for HPI.
	I2C_SDA_SCB2_TBT/GPIO			I^2 C Config Line Floating: 0x08 Pulled up with 1 kΩ: 0x42 Pulled down with 1 kΩ: 0x40
		P1.1	3	SCB2 I ² C Data/GPIO
	I2C_SCL_SCB2_TBT/GPIO	P1.2	4	SCB2 I ² C Clock/GPIO
	I2C_INT_TBT/GPIO	P1.3	5	TBT interrupt/GPIO
	OVP_TRIP/I2C_SDA_SCB4/GPIO	P2.1	14	VBUS overvoltage output indicator/SCB4 I ² C Data
l	UV_OCP_TRIP/I2C_SCL_SCB4/GPIO	P2.0	13	VBUS undervoltage or OCP Output Indicator/ SCB4 I ² C Clock/GPIO
	I2C_SDA_SCB1_EC/GPIO	P5.0	16	SCB1 I ² C Data/GPIO
	I2C_SCL_SCB1_EC/GPIO	P5.1	17	SCB1 I ² C Clock/GPIO
	I2C_INT_EC/GPIO	P2.2	15	Embedded Controller interrupt/GPIO
	HPD/GPIO	P3.0	18	Hot Plug Detect I/O/GPIO
	I2C_SDA_SCB3 / GPIO / VSEL_2	P3.1	20	SCB3 I ² C Data or GPIO or voltage selection control for VBUS
	I2C_SCL_SCB3 / GPIO /VSEL_1	P3.2	21	SCB3 I ² C Clock or GPIO or voltage selection control for VBUS
Reset	XRES	Analog	10	Reset input (Active LOW)
Power	VBUS	Power	22	Supply input (4 V–21.5 V) for VBUS to 3.3-V Regulator. This pin also discharges VBUS using internal pull-down and also has monitors for overvoltage and undervoltage conditions.
	VSYS	Power	19	Supply input (2.75 V–5.5 V) for PD subsystem and system resources.
	VDDD	Power	31	Output of VBUS to 3.3-V regulator or connected to VSYS using switch. Bypass with cap to GND. This pin can drive 2-mA external load.
	VDDIO	Power	32	This pin can be shorted to VDDD or an independent supply can be given.
	VCCD	Power	33	1.8-V regulator output for filter capacitor. This pin cannot drive external load.
	V5V	Power	8	4.85-V to 5.5-V supply input to power EMCA cables. Connected to CC1 or CC2 using low-impedance switches.
Ground	VSS	Ground	EPAD	Ground

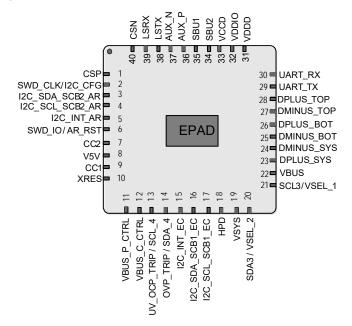


Figure 5. 40-Pin QFN Pin Map (Top View) for CYPD5126-40LQXIT

Table 3 through Table 6 provide the various configuration options for the serial interfaces.

Table 3. Serial Communication Block (SCB1) Configuration

QFN Pin	UART	SPI	l ² C	GPIO Functionality
16	UART_RTS_SCB1	SPI_MOSI_SCB1	I2C_SDA_SCB1	GPIO
17	UART_TX_SCB1	SPI_MISO_SCB1	I2C_SCL_SCB1	GPIO
18	UART_RX_SCB1	SPI_CLK_SCB1	_	HPD/GPIO
15	UART_CTS_SCB1	SPI_SEL_SCB1	_	I2C_INT_EC/GPIO

Table 4. Serial Communication Block (SCB2) Configuration

QFN Pin	UART	SPI Master	I ² C Slave	GPIO Functionality
2	UART_RX_SCB2	SPI_SEL_SCB2	_	SWD_CLK/I2C_CFG_EC/GPIO
3	UART_TX_SCB2	SPI_MOSI_SCB2	I2C_SDA_SCB2	I2C_SDA_SCB2_TBT/GPIO
4	UART_CTS_SCB2	SPI_MISO_SCB2	I2C_SCL_SCB2	I2C_SCL_SCB2_TBT/GPIO
5	UART_RTS_SCB2	SPI_CLK_SCB2	-	I2C_INT_TBT/GPIO

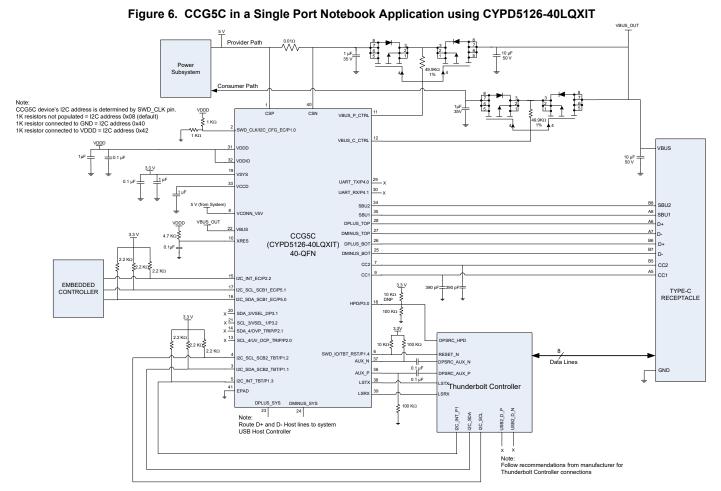
Table 5. Serial Communication Block (SCB3) Configuration

QFN Pin	UART	SPI Master	I ² C Slave	GPIO Functionality
20	UART_CTS_SCB3	SPI_SEL_SCB3	I2C_SDA_SCB3	VSEL_2/GPIO
21	UART_RTS_SCB3	SPI_MOSI_SCB3	I2C_SCL_SCB3	VSEL_1/GPIO
29	UART_TX_SCB3	SPI_MISO_SCB3	_	UART_TX / GPIO
30	UART_RX_SCB3	SPI_CLK_SCB3	-	UART_RX / GPIO

Table 6. Serial Communication Block (SCB4) Configuration

Ī	QFN Pin	UART	SPI Master	I ² C Slave	GPIO Functionality
ſ	13	_	_	I2C_SCL_SCB4	GPIO
Ī	14	_	_	I2C_SDA_SCB4	GPIO

Application Diagram


Figure 6 illustrates a Type-C port Thunderbolt notebook DRP application diagram using CCG5C. The Type-C port can be used as a power provider or a power consumer.

The CCG5C device communicates with the embedded controller (EC), which manages the Battery Charger Controller (BCC) to control the charging and discharging of the internal battery. It also updates the Thunderbolt Controller via I²C to route the high-speed signals coming from the Type-C port to the USB host (during normal mode) or the graphics processor unit (during DisplayPort Alternate mode) or the Thunderbolt Host (during Thunderbolt Alternate mode) based on the alternate mode negotiation.

The CCG5C device controls the transfer of USB 2.0 D± lines from the top and bottom of the Type-C receptacle to the D± lines of the USB Host controller. CCG5C also handles the routing of SBU1 and SBU2 lines from the Type-C receptacle to the Thunderbolt controller for link management. CCG5C offers VBUS short protection on SBU and CC lines.

The CCG5C device has an integrated VCONN FET for applications that need to provide power for accessories and cables using the VCONN pin of the Type-C receptacle. VBUS FETs are also used for providing power over VBUS and for consuming power over VBUS. The $10\text{-m}\Omega$ resistor between the 5-V supply and provider FETs is used for overcurrent detection on the VBUS. The VBUS_P_CTRL pin of CCG5C has an in-built VBUS monitoring circuit that can detect OV and UV on VBUS.

Figure 6 illustrates a single-port Thunderbolt notebook DRP application diagram using CYPD5126-40LQXIT.

Electrical Specifications

Absolute Maximum Ratings

Table 7. Absolute Maximum Ratings^[3]

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
V _{SYS_MAX}	Supply relative to V _{SS}	_	-	6	V	
V _{5V_MAX}	Max supply voltage relative to V _{SS}	_	-	6	V	
V _{BUS_MAX}	Max VBUS voltage relative to Vss	_	-	24	V	_
V_{DDIO_MAX}	Max supply voltage relative to V _{SS}	_	_	V_{DDD}	V	
V _{GPIO_ABS}	Inputs to GPIO, DP/DM mux (UART, SYS, DP/DM_top/bot pins), SBU mux (SBU1/2 pins)	-0.5	-	V _{DDIO} + 0.5	V	
I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25	mA	
I _{GPIO_INJECTION}	GPIO injection current, Max for $V_{IH} > V_{DDD}$, and Min for $V_{IL} < V_{SS}$	-0.5	-	0.5	mA	Absolute max, current injected per pin
ESD_HBM	Electrostatic discharge human body model	2200	-	_	V	
ESD_CDM	Electrostatic discharge charged device model	500	-	_	V	_
LU	Pin current for latch-up	-200	_	200	mA	_
VCC_PIN_ABS	Max voltage on CC1 and CC2 pins	_	_	24	V	
VSBU_PIN_ABS	Max voltage on SBU1 and SBU2 pins	_	-	24	V	
VGPIO_OVT_ABS	OVT pins (16, 17) voltage	-0.5	-	6	V	
ESD_HBM_SBU	Electrostatic discharge human body model for SBU1, SBU2 pins	1100	-	-	V	Only applicable to SBU1 and SBU2 pins

Note

Document Number: 002-23803 Rev. *A

Usage above the absolute maximum conditions listed in Table 7 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Device-Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T $_{J}$ \leq 120 °C, except where noted. Specifications are valid for 3.0 V to 5.5 V except where noted.

Table 8. DC Specifications (Operating Conditions)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PWR#23	V_{SYS}		2.75	-	5.5	V	UFP applications
SID.PWR#23_A	V_{SYS}		3	_	5.5	V	DFP/DRP applications
SID.PWR#22	V_{BUS}		4	_	21.5	V	_
SID.PWR#1	V_{DDD}	Regulated output voltage when V _{SYS} powered	V _{SYS} – 0.05	_	V _{SYS}	V	_
SID.PWR#1_A	V_{DDD}	Regulated output voltage when V _{BUS} powered	3	_	3.6	V	_
SID.PWR#26	V_{5V}		4.85	-	5.5	V	-
SID.PWR#13	V _{DDIO}		V_{DDD}	_	V_{DDD}	V	At system-level, short V_{DDIO} to V_{DDD}
SID.PWR#24	V _{CCD}	Regulated output voltage (for core logic)	_	1.8	_	V	_
SID.PWR#15	C _{EFC}	Regulator bypass capacitor for V _{CCD}	_	100	_	nF	X5R ceramic or better
SID.PWR#16	C _{EXC}	Regulator bypass capacitor for V _{DDD}	_	1	_	μF	
Active Mode, V _S	_{YS} = 2.75 to 5	.5 V. Typical values measured at	V _{SYS} = 3	3.3 V	•	•	
SID.PWR#4	I _{DD12}	Supply current	_	10	-	mA	T _A = 25 °C, CC I/O IN Transmit or Receive, no I/O sourcing current, CPU at 24 MHz, PD port active
Deep Sleep Mod	e, V _{SYS} = 2.7	5 to 3.6 V	•	•			
SID34	I _{DD29}	V_{SYS} = 2.75 to 3.6 V, I ² C, wakeup and WDT on.	_	150	_	μA	$V_{SYS} = 3.3 \text{ V}, T_A = 25 \text{ °C},$
SID_DS1	I _{DD_DS1}	V _{SYS} = 3.3 V, CC wakeup on, Type-C not connected	_	100	_	μА	Power source = V _{SYS} , Type-C not attached, CC enabled for wakeup, R _P and R _D connected at 70-ms intervals by CPU.
SID_DS3	I _{DD_DS2}	V _{SYS} = 3.3 V, CC wakeup on, DP/DM, SBU ON with ADC/CSA/UVOV On	-	500	-	μA	IDD_DS1 + DP/DM, SBU, CC ON, ADC/CSA/UVOV ON
XRES Current	•		•	•		•	
SID307	I _{DD_XR}	Supply current while XRES asserted	_	130	_	μA	Power Source = V _{SYS} = 3.3 V, Type-C Not Attached, T _A = 25 °C

CPU

Table 9. CPU Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#4	F _{CPU}	CPU input frequency	_	-	48	MHz	All V _{DDD}
SID.PWR#21	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	35	_		Guaranteed by
SYS.XRES#5	T _{XRES}	External reset pulse width	5	_	_	μs	characterization
SYS.FES#1	T_PWR_RDY	Power-up to "Ready to accept I ² C/CC command"	_	5	25	ms	

GPIO

Table 10. GPIO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.GIO#37	V _{IH_CMOS}	Input voltage HIGH threshold	$0.7 \times V_{DDIO}$	-	-	V	CMOS input
SID.GIO#38	V _{IL_CMOS}	Input voltage LOW threshold	-	-	$0.3 \times V_{DDIO}$	V	CMOS input
SID.GIO#39	V _{IH_VDDIO2.7-}	LVTTL input, V _{DDIO} < 2.7 V	$0.7 \times V_{DDIO}$	_	_	V	_
SID.GIO#40	V _{IL_VDDIO2.7} -	LVTTL input, V _{DDIO} < 2.7 V	-	_	$0.3 \times V_{DDIO}$	V	_
SID.GIO#41	V _{IH_VDDIO2.7+}	LVTTL input, V _{DDIO} ≥ 2.7 V	2.0	_	_	V	_
SID.GIO#42	V _{IL_VDDIO2.7+}	LVTTL input, V _{DDIO} ≥ 2.7 V	-	_	0.8	V	_
SID.GIO#33	V _{OH}	Output voltage HIGH level	V _{DDIO} – 0.6	_	_	V	I _{OH} = –4 mA at 3-V V _{DDIO}
SID.GIO#34	V _{OH}	Output voltage HIGH level	V _{DDIO} – 0.5	_	_	V	$I_{OH} = -1 \text{mA}$ at 1.8-V V_{DDIO}
SID.GIO#35	V _{OL}	Output voltage LOW level	-	-	0.6	V	I_{OL} = 4 mA at 1.8-V V_{DDIO}
SID.GIO#36	V _{OL}	Output voltage LOW level	_	_	0.6	V	I_{OL} = 10 mA (IOL_LED) at 3-V V _{DDIO}
SID.GIO#5	R _{PU}	Pull-up resistor when enabled	3.5	5.6	8.5	kΩ	+25 °C T _A , All V _{DDIO}
SID.GIO#6	R _{PD}	Pull-down resistor when enabled	3.5	5.6	8.5	kΩ	+25 °C T _A , All V _{DDIO}
SID.GIO#16	I _{IL}	Input leakage current (absolute value)	_	_	2	nA	+25 °C T _A , 3-V V _{DDIO}
SID.GIO#17	C _{PIN}	Max pin capacitance	-	3	7	pF	_
SID.GIO#43	V _{HYSTTL}	Input hysteresis, LVTTL	15	40	-	mV	V _{DDIO} > 2.7 V. Guaranteed by characterization
SID.GIO#44	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDIO}	-	_	mV	V _{DDIO} < 4.5 V
SID.GIO#44A	V _{HYSCMOS55}	Input hysteresis CMOS	200	_	_	mV	V _{DDIO} > 4.5 V

Table 11. GPIO AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID70	T _{RISEF}	Rise time in Fast Strong mode	2	_	12	ns	3.3-V V _{DDIO} , C _{load} = 25 pF
SID71	T _{FALLF}	Fall time in Fast Strong mode	2	_	12	ns	3.3-V V_{DDIO} , $C_{load} = 25 \text{ pF}$
SID.GIO#46	T _{RISES}	Rise time in Slow Strong mode	10	_	60	ns	3.3-V V_{DDIO} , $C_{load} = 25 \text{ pF}$
SID.GIO#47	T _{FALLS}	Fall time in Slow Strong mode	10	_	60	ns	3.3-V V_{DDIO} , $C_{load} = 25 \text{ pF}$
SID.GIO#48	F _{GPIO_OUT1}	GPIO F _{OUT} ; 3.3 V≤V _{DDIO} ≤5.5 V. Fast Strong mode	_	_	16	MHz	90/10%, 25-pF load
SID.GIO#49	F _{GPIO_OUT2}	GPIO F _{OUT} ; 1.7 V≤V _{DDIO} ≤3.3 V. Fast Strong mode	-	_	16	MHz	90/10%, 25-pF load
SID.GIO#50	F _{GPIO_OUT3}	GPIO F _{OUT} ; 3.3 V≤V _{DDIO} ≤5.5 V. Slow Strong mode	-	_	7	MHz	90/10%, 25-pF load
SID.GIO#51	F _{GPIO_OUT4}	GPIO F _{OUT} ; 1.7 V≤V _{DDIO} ≤3.3 V. Slow Strong mode	-	_	3.5	MHz	90/10%, 25-pF load
SID.GIO#52	F _{GPIO_IN}	GPIO input operating frequency; 1.7 V≤V _{DDIO} ≤5.5 V	-	_	16	MHz	90/10% V _{IO}

XRES

Table 12. XRES DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.XRES#1	V _{IH}	Input voltage HIGH threshold	0.7 × V _{DDIO}	1	-	V	CMOS input
SID.XRES#2	V _{IL}	Input voltage LOW threshold	-	1	0.3 × V _{DDIO}	V	CMOS input
SID.XRES#3	C _{IN}	Input capacitance	_	_	7	pF	_
SID.XRES#4	V _{HYSXRES}	Input voltage hysteresis	-	0.05 × V _{DDIO}	1	mV	Guaranteed by characterization

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for GPIO Pins

Table 13. PWM AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.3	T _{CPWMFREQ}	Operating frequency	-	_	Fc	MHz	Fc max = CLK_SYS. Maximum = 48 MHz
SID.TCPWM.4	T _{PWMENEXT}	Input trigger pulse width	2/Fc	_	_	ns	For all trigger events
SID.TCPWM.5	T _{PWMEXT}	Output trigger pulse width	2/Fc	-	-	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	T _{CRES}	Resolution of counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	_	-	ns	Minimum pulse width of PWM output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	ı	-	ns	Minimum pulse width between quadrature-phase inputs

²C

Table 14. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	_	1	Mbps	_

UART

Table 15. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	-	_	1	Mbps	_

Document Number: 002-23803 Rev. *A Page 17 of 32

SPI

Table 16. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	F _{SPI}	SPI operating frequency (Master; 6x oversampling)	_	-	8	MHz	-

Table 17. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID167	T _{DMO}	MOSI valid after SClock driving edge	-	-	15	ns	_
SID168	T _{DSI}	MISO valid before SClock capturing edge	20	_	_	ns	Full clock, late MISO sampling
SID169	Т _{НМО}	Previous MOSI data hold time	0	_	_	ns	Referred to slave capturing edge

Table 18. Fixed SPI Slave Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID170	T _{DMI}	MOSI Valid before SClock capturing edge	40	_	_	ns	_
SID171	T _{DSO}	MISO Valid after SClock driving edge	_	_	48 + (3 × T _{CPU})	ns	T _{CPU} = 1 / F _{CPU}
SID171A	T _{DSO_EXT}	MISO Valid after SClock driving edge in Ext Clk mode	_	_	48	ns	_
SID172	T _{HSO}	Previous MISO data hold time	0	_	_	ns	_
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	_	-	ns	_

Memory

Table 19. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.MEM#4	T _{ROW_WRITE}	Row (Block) write time (erase and program)	-	-	20	ms	_
SID.MEM#3	T _{ROW_ERASE}	Row erase time	_	_	13	ms	_
SID.MEM#8	T _{ROWPROGRAM}	Row program time after erase	_	_	7	ms	25 °C to 55 °C, All V _{DDD}
SID178	T _{BULKERASE}	Bulk erase time (128 KB)	_	_	35	ms	Guaranteed by design
SID180	T _{DEVPROG}	Total device program time	_	_	25	S	Guaranteed by design
SID.MEM#6	F _{END}	Flash endurance	100k	_	_	cycles	_
SID182	F _{RET1}	Flash retention, T _A ≤ 55 °C, 100k P/E cycles	20	-	_	years	_
SID182A	F _{RET2}	Flash retention, T _A ≤ 85 °C, 10k P/E cycles	10	_	-	years	_

System Resources

Power-on-Reset (POR) with Brown Out

Table 20. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	_	1.50		Guaranteed by
SID186	V _{FALLIPOR}	Falling trip voltage	0.70	_	1.4	V	characterization

Table 21. Precise Power On Reset (POR) (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	Brown-out Detect (BOD) trip voltage in active/sleep modes	1.48	_	1.62		Guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep mode	1.1	-	1.5	V	

SWD Interface

Table 22. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.SWD#1	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DDIO} \leq 5.5 \text{ V}$	_	-	14		SWDCLK ≤ 1/3 CPU clock frequency
SID.SWD#2	F_SWDCLK2	$1.8 \text{ V} \leq \text{V}_{DDIO} \leq 3.3 \text{ V}$	-	_	7		SWDCLK ≤ 1/3 CPU clock frequency
SID.SWD#3	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 × T	_	_	ns	Guaranteed by
SID.SWD#4	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 × T	_	_	ns	characterization
SID.SWD#5	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.50 × T	ns	
SID.SWD#6	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_	ns	

Internal Main Oscillator

Table 23. IMO AC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#13	F _{IMOTOL}	Frequency variation at 48 MHz (trimmed)	_	_	±2	%	2.7 V ≤ V _{DDD} < 5.5 V. -25 °C ≤ T _A ≤ 85 °C
SID226	T _{STARTIMO}	IMO start-up time	_	_	7	μs	_
SID.CLK#1	F _{IMO}	IMO frequency	_	48	_	MHz	_

Internal Low-speed Oscillator

Table 24. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	I _{LO} start-up time	_	_	2	ms	Guaranteed by
SID238	T _{ILODUTY}	I _{LO} duty cycle	40	50	60	%	characterization
SID.CLK#5	F _{ILO}	I _{LO} frequency	20	40	80	kHz	_

Document Number: 002-23803 Rev. *A Page 19 of 32

PD

Table 25. PD DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.DC.cc_shvt.1	vSwing	Transmitter Output High Voltage	1.05	_	1.2	V	_
SID.DC.cc_shvt.2	vSwing_low	Transmitter Output Low Voltage		1	0.075	V	_
SID.DC.cc_shvt.3	zDriver	Transmitter output impedance	33	-	75	Ω	_
SID.DC.cc_shvt.4	zBmcRx	Receiver Input Impedance	10	_		МΩ	Guaranteed by design
SID.DC.cc_shvt.5	Idac_std	Source current for USB standard advertisement	64	-	96	μA	_
SID.DC.cc_shvt.6	Idac_1p5a	Source current for 1.5 A at 5 V advertisement	165.6	-	194.4	μA	_
SID.DC.cc_shvt.7	Idac_3a	Source current for 3 A at 5 V advertisement	303.6	-	356.4	μA	_
SID.DC.cc_shvt.8	Rd	Pull-down termination resistance when acting as UFP	4.59	-	5.61	kΩ	_
SID.DC.cc_shvt.9	Rd_db	Pull-down termination resistance when acting as UFP, with dead battery	4.08	_	6.12	kΩ	_
SID.DC.cc_shvt.10	zOPEN	CC impedance to ground when disabled	108	-		kΩ	_
SID.DC.cc_shvt.11	DFP_default_0p2	CC voltages on DFP side-Standard USB	0.15	-	0.25	V	_
SID.DC.cc_shvt.12	DFP_1.5A_0p4	CC voltages on DFP side-1.5 A	0.35	-	0.45	V	_
SID.DC.cc_shvt.13	DFP_3A_0p8	CC voltages on DFP side-3 A	0.75	-	0.85	V	_
SID.DC.cc_shvt.14	DFP_3A_2p6	CC voltages on DFP side-3 A	2.45	-	2.75	V	_
SID.DC.cc_shvt.15	UFP_default_0p66	CC voltages on UFP side-Standard USB	0.61	-	0.7	V	_
SID.DC.cc_shvt.16	UFP_1.5A_1p23	CC voltages on UFP side-1.5 A	1.16	-	1.31	V	_
SID.DC.cc_shvt.17	Vattach_ds	Deep Sleep attach threshold	0.3	-	0.6	%	_
SID.DC.cc_shvt.18	Rattach_ds	Deep Sleep pull-up resistor	10	_	50	kΩ	_
SID.DC.cc_shvt.30	FS_0p53	Voltage threshold for Fast Swap Detect	0.49	_	0.58	V	_

Analog to Digital Converter

Table 26. ADC DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.1	Resolution	ADC resolution	_	8	_	Bits	_
SID.ADC.2	INL	Integral nonlinearity	-1.5	1	1.5	LSB	_
SID.ADC.3	DNL	Differential nonlinearity	-2.5	-	2.5	LSB	_
SID.ADC.4	Gain Error	Gain error	-1.5	-	1.5	LSB	_
SID.ADC.5	VREF_ADC1	Reference voltage of ADC	V_{DDDmin}	_	V_{DDDmax}	V	Reference voltage generated from V _{DDD}
SID.ADC.6	VREF_ADC2	Reference voltage of ADC	1.96	2.0	2.04	V	Reference voltage generated from bandgap

Charger Detect

Table 27. Charger Detect Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
DC.CHGDET.1	VDAT_REF	Data detect voltage in charger detect mode	250	-	400	mV	_
DC.CHGDET.2	VDM_SRC	DM voltage source in charger detect mode	500	-	700	mV	_
DC.CHGDET.3	VDP_SRC	DP voltage source in charger detect mode	500	-	700	mV	_
DC.CHGDET.4	IDM_SINK	DM sink current in charger detect mode	25	-	175	μA	_
DC.CHGDET.5	IDP_SINK	DP sink current in charger detect mode	25	ı	175	μA	_
DC.CHGDET.6	IDP_SRC	Data contact detect current source	7	_	13	μA	_
DC.CHGDET.27	RDP_UP	Qualcomm pull-up termination on DP/DM	0.9	-	1.575	kΩ	_
DC.CHGDET.32	RDM_UP	DP/DM pull-up resistance	0.9	_	1.575	kΩ	_
DC.CHGDET.28	RDP_DWN	Qualcomm pull-down termination on DP/DM	14.25	_	24.8	kΩ	_
DC.CHGDET.31	RDM_DWN	DP/DM pull-down resistance	14.25	_	24.8	kΩ	_
DC.CHGDET.29	RDAT_LKG	Data line leakage on DP/DM	300	_	500	kΩ	_
DC.CHGDET.34	VSETH	Logic Threshold	1.26	_	1.54	V	_

 V_{BUS} Regulator

Table 28. V_{BUS} Regulator AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.AC.20VREG.1	T _{START}	Total start up time for the regulator supply output	-	1	120		Apply V _{BUS} and measure start time on V _{DDD} pin
SID.AC.20VREG.2	Т _{ЅТОР}	Regulator power down time from vreg_en = 0	_	ı	1		Time from assertion of an internal disable signal to load current to decrease from 30 mA to 10 µA

V_{SYS} Switch

Table 29. $V_{\rm SYS}$ Switch Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.DC.VDDDSW.1	_	Resistance from supply input to output supply V _{DDD}	_	1	1.5		Measured with a load current of 5 mA to 10 mA on V _{DDD}

CSA

Table 30. CSA DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.DC.CSA.21		Cumulative output Error for Av=15, after trim, using Deep Sleep (beta-multiplier) reference	- 7	-	7	%	_
SID.DC.CSA.22		Cumulative output error for Av=15, after trim, using bandgap reference	-4.5	_	4.5	%	
SID.DC.CSA.23		Cumulative output error for Av=100, after trim, using Deep Sleep (beta-multiplier) reference	-24.5	-	24.5	%	

 V_{BUS} UV/OV

Table 31. V_{BUS} UV/OV Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.UVOV.1	V _{THUVOV1}	Voltage threshold accuracy in Active mode using bandgap reference	-	±3	_	%	_
SID.UVOV.2	V _{THUVOV2}	Voltage threshold accuracy in Deep Sleep mode using Deep Sleep reference	-	±5	_	%	
SID.COMP_ACC	COMP_ACC	Comparator input offset at 4 s	-15	_	15	mV	

Consumer and Provider Side PFET Gate Driver

Table 32. Consumer and Provider Side PFET Gate Driver DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.DC.PGDO.1	Rpd	Resistance when "pull_dn" enabled	-	_	5	kΩ	_

Table 33. Consumer and Provider Side PFET Gate Driver AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.AC.PGDO.2	Tr_discharge	Discharge rate of output node	_	_	5	V/µs	Guaranteed by design

SBU Switch

Table 34. SBU Switch DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID.DC.20sbu.1	Ron1	On resistances for Aux switch at 3.3-V input	-	4	7	Ω	_	
SID.DC.20sbu.2	Ron2	On resistances for Aux switch at 1-V input	-	3	5	Ω	-	
SID.DC.20sbu.4	Ileak1	Pin leakage current for SBU1, SBU2	-4.5	_	4.5	μA	-	
SID.DC.20sbu.5	lleak2	Pin leakage current for LSTX, LSRX, AUX_P, AUX_N	-1	_	1	μA	_	
SID.DC.20sbu.6	Rpu_aux_1	Pull-up resistance on AUX_P/N	80	_	320	ΚΩ	-	
SID.DC.20sbu.7	Rpu_aux_2	Pull-up resistance on AUX_P/N	8.0	_	1.4	МΩ	-	
SID.DC.20sbu.8	Rpd_aux_1	Pull-down resistance on AUX_P/N	80	_	120	ΚΩ	-	
SID.DC.20sbu.9	Rpd_aux_2	Pull-down resistance on AUX_P/N	0.3	_	1.2	МΩ	-	
SID.DC.20sbu.10	Rpd_aux_3	Pull-down resistance on AUX_P/N	250	_	611	ΚΩ	-	
SID.DC.20sbu.11	Rpd_aux_4	Pull-down resistance on AUX_P/N	0.3	_	6.11	МΩ	-	
SID.DC.20sbu.16	OVP_threshold	Over-voltage protection detection threshold above V _{DDIO}	200	_	1200	mV	_	
SID.DC.20sbu.17	lsx_ron_3p3	On resistances of LSTX/LSRX to SBU1/2 switch at 3.3-V input	-	8.5	17	Ω	_	
SID.DC.20sbu.18	lsx_ron_1	On resistances of LSTX/LSRX to SBU1/2 switch at 1-V input	-	5.5	11	Ω	_	
SID.DC.20sbu.19	aux_ron_flat_fs	Switch On flat resistances of AUX_P/N to SBU1/2 switch (from 0 to 3.3 V)	-	_	2.5	Ω	Guaranteed by design	
SID.DC.20sbu.20	aux_ron_flat_hs	Switch On flat resistances of AUX_P/N to SBU1/2 switch (from 0 to 1 V)	-	_	0.5	Ω	Guaranteed by design	
SID.DC.20sbu.21	lsx_ron_flat_fs	Switch On flat resistances of LSTX/LSRX to SBU1/2 switch (from 0 to 3.3 V)	-	_	5	Ω	Guaranteed by design	
SID.DC.20sbu.22	lsx_ron_flat_hs	Switch On flat resistances of LSTX/LSRX to SBU1/2 switch (from 0 to 1 V)	-	_	0.5	Ω	Guaranteed by design	

Table 35. SBU Switch AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.AC.20sbu.1	Con	Switch On capacitance	_	_	120	pF	_
SID.AC.20sbu.2	Coff	Switch Off capacitance - Connector side	_	_	80	pF	_
SID.AC.20sbu.3	Off_isolation	Switch isolation at F=1 MHz	-50	-		dB	_
SID.AC.20sbu.4	T _{ON}	SBU Switch turn-on time	_	-	200	μs	_
SID.AC.20sbu.5	T _{OFF}	SBU Switch turn-off time	_	-	400	μs	Guaranteed by design
SID.AC.20sbu.6	Off_isolation_tran	Coupling on SBU1, 2 terminated to 50 ohm, switch-OFF, Rail-to-rail toggling on LSTX/LSRX	- 60	-	60	mV	Guaranteed by design
SID.AC.20sbu.7	X_talk_AC	Crosstalk of switch at F=1 MHz SBU1/2 to SBU2/1	– 50	_	-	dB	Guaranteed by design
SID.AC.20sbu.8	X_talk_tran	Check voltage coupling on SBU2(1) when Data is trans- ferred from LSTX (RX) to SBU1 (2)	- 70	_	70	mV	Guaranteed by design

DP/DM Switch

Table 36. DP/DM Switch DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions		
SID.DC.dpdm.1	RON_HS	DPDM On resistance (0 to 0.5 V) - HS mode	-	-	8	Ω	-		
SID.DC.dpdm.2	RON_FS	DPDM On resistance (0 to 3.3 V) - FS mode	-	-	12	Ω	-		
SID.DC.dpdm.5	Con_FS	Switch On capacitance at 6 MHz - FS mode	-	-	50	pF	Guaranteed by design		
SID.DC.dpdm.6	Con_HS	Switch on capacitance at 240 MHz - HS mode	-	-	10	pF	_		
SID.DC.dpdm.9	ileak_pin	Pin leakage at DP/DM connector side and Host side	-	-	1	μA	_		
SID.DC.dpdm.10	RON_UART	DPDM On resistance for UART lines (0 to 3.3 V)	-	-	17	Ω	_		
SID.DC.dpdm.11	RON_FLAT_HS	DPDM On Flat resistance in HS mode (0 to 0.4 V)	-	-	0.5	Ω	Guaranteed by design		
SID.DC.dpdm.12	RON_FLAT_FS	DPDM On flat resistance in FS mode (0 to 3.3 V)	-	-	4	Ω	Guaranteed by design		
SID.DC.dpdm.13	RON_FLAT_UART	DPDM UART On Flat resistance (0 to 3.3 V)	_	_	4	Ω	Guaranteed by design		

Table 37. DP/DM Switch AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID.AC.dpdm.5	T _{ON}	DP/DM Switch turn-on time	_	-	200	μs	_	
SID.AC.dpdm.6	T _{OFF}	DP/DM Switch turn-off time	-	-	0.4	μs	Guaranteed by design	
SID.AC.dpdm.7	T _{ON_VPUMP}	DP/DM charge pump startup time	-	-	200	μs	Guaranteed by characterization	
SID.AC.dpdm.8	Off_isolation_HS	Switch-off isolation for HS	-20	-	-	db	db Guaranteed by design	
SID.AC.dpdm.9	Off_isolation_FS	Switch-off isolation for FS	-50	-	-	db	db Guaranteed by design	
SID.AC.dpdm.10	X_talk	Crosstalk of Switch from FS to HS at F=12 MHz	-50	-	-	db	db Guaranteed by design	
SID.AC.dpdm.11	uart_coupling	Peak-to-peak coupling of UART signal to DP lines (UART signal 0 to 3.3 V)	_	_	20	mV	/ Guaranteed by design	

VCONN Switch

Table 38. VCONN Switch DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.DC.20VCONN.1	Ron	Switch ON resistance at V5V = 5 V with 215-mA load current	-	0.7	1.3	Ω	_
SID.DC.20VCONN.9	I _{OCP}	Overcurrent detection range for CC1/CC2	550	-	_	mA	_
SID.DC.20VCONN.10	OVP_threshold	Overvoltage detection threshold above V _{DDD} or V5V, whichever is higher	200	_	1200	mV	_
SID.DC.20VCONN.11	OVP_hysteresis	Overvoltage detection hysteresis	50	-	200	mV	Guaranteed by design
SID.DC.20VCONN.12	OCP_hysteresis	Overcurrent detection hysteresis	20	-	60	mA	_
SID.DC.20VCONN.14	OVP_threshold_on	Overvoltage detection threshold above V5V of CC1/2, with CC1 or CC2 switch enabled. Same threshold triggers reverse current protection circuit	200	_	700	mV	_

Table 39. VCONN Switch AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.AC.20VCONN.1	T _{ON}	VCONN switch turn-on time	-	_	200	μs	_
SID.AC.20VCONN.2	T _{OFF}	VCONN switch turn-off time	1	1	3	μs	Guaranteed by design

 V_{BUS}

Table 40. V_{BUS} Discharge Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.VBUS.DISC.1	Ron1	20-V NMOS ON resistance	1500	_	3000	Ω	_
SID.VBUS.DISC.2	Ron2	20-V NMOS ON resistance	750	_	1500	Ω	_
SID.VBUS.DISC.3	Ron3	20-V NMOS ON resistance	500	_	1000	Ω	_
SID.VBUS.DISC.4	Ron4	20-V NMOS ON resistance	375	_	750	Ω	_
SID.VBUS.DISC.5	Ron5	20-V NMOS ON resistance	300	_	600	Ω	_

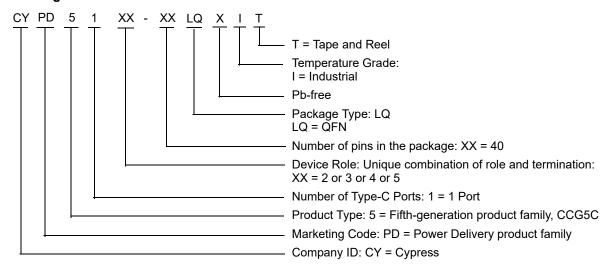

Ordering Information

Table 41 lists the EZ-PD CCG5C part numbers and features.

Table 41. EZ-PD CCG5C Ordering Information

Part Number	Application	Type-C Ports	Dead Battery Termination	Termination Resistor		
CYPD5126-40LQXIT	Notebooks, Desktops	1	Yes	$R_{P}^{[4]}, R_{D}^{[5]}, R_{D-DB}^{[6]}$	DRP	40-pin QFN

Ordering Code Definitions

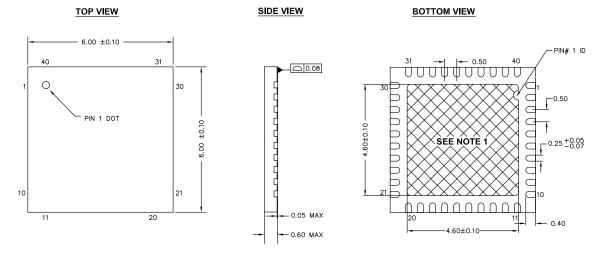
Notes

Termination resistor denoting a downstream facing port.
 Termination resistor denoting an accessory or upstream facing port.
 Termination resistor denoting dead-battery termination.

Packaging

Table 42. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	Industrial	-40	25	85	°C
T_J	Operating junction temperature	Industrial	-40	25	100	°C
T_{JA}	Package θ _{JA} (40-pin QFN)	-	_	_	19.3	°C/W
T_JC	Package θ_{JC} (40-pin QFN)	-	_	_	13.6	°C/W


Table 43. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time within 5 °C of Peak Temperature
40-pin QFN	260 °C	30 seconds

Table 44. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
40-pin QFN	MSL 3

Figure 7. 40-Pin QFN (6 × 6 × 0.6 mm), LR40A/LQ40A 4.6 × 4.6 E-PAD (Sawn) Package Outline, 001-80659

NOTES:

- 1. \bigotimes HATCH AREA IS SOLDERABLE EXPOSED PAD
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: 68 ±2 mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-80659 *A

Acronyms

Table 45. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
API	application programming interface
Arm [®]	advanced RISC machine, a CPU architecture
CC	configuration channel
BOD	Brown out Detect
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	current sense
DB	dead battery
DFP	downstream facing port
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DRP	dual-role power
EEPROM	electrically erasable programmable read-only memory
EMCA	a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EMI	electromagnetic interference
ESD	electrostatic discharge
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
I/O	input/output, see also GPIO
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
MCU	microcontroller unit
NC	no connect
NMI	nonmaskable interrupt

Table 45. Acronyms Used in this Document (continued)

Acronym	Description			
NVIC	nested vectored interrupt controller			
opamp	operational amplifier			
OCP	overcurrent protection			
OVP	overvoltage protection			
РСВ	printed circuit board			
PD	power delivery			
PGA	programmable gain amplifier			
PHY	physical layer			
POR	power-on reset			
PRES	precise power-on reset			
PSoC [®]	Programmable System-on-Chip™			
PWM	pulse-width modulator			
RAM	random-access memory			
RISC	reduced-instruction-set computing			
RMS	root-mean-square			
RTC	real-time clock			
RX	receive			
SAR	successive approximation register			
SCL	I ² C serial clock			
SDA	I ² C serial data			
S/H	sample and hold			
SPI	Serial Peripheral Interface, a communications protocol			
SRAM	static random access memory			
SWD	serial wire debug, a test protocol			
TX	transmit			
Type-C	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power			
UART	Universal Asynchronous Transmitter Receiver, a communications protocol			
USB	Universal Serial Bus			
USBIO	USB input/output, CCG5C pins used to connect to a USB port			
XRES	external reset I/O pin			

Document Conventions

Units of Measure

Table 46. Units of Measure

Table 46. Utilis of Measure					
Symbol	Unit of Measure				
°C	degrees Celsius				
Hz	hertz				
KB	1024 bytes				
kHz	kilohertz				
kΩ	kilo ohm				
Mbps	megabits per second				
MHz	megahertz				
ΜΩ	mega-ohm				
Msps	megasamples per second				
μA	microampere				
μF	microfarad				
μs	microsecond				
μV	microvolt				
μW	microwatt				
mA	milliampere				
ms	millisecond				
mV	millivolt				
nA	nanoampere				
ns	nanosecond				
Ω	ohm				
pF	picofarad				
ppm	parts per million				
ps	picosecond				
S	second				
sps	samples per second				
V	volt				

References and Links to Applications Collateral

Knowledge Base Articles

- Key Differences Among EZ-PD™ CCG1, CCG2, CCG3 and CCG5 - KBA210740
- Programming EZ-PD™ CCG2, EZ-PD™ CCG3 and EZ-PD™ CCG5 Using PSoC® Programmer and MiniProg3 KBA96477
- CCGX Frequently Asked Questions (FAQs) KBA97244
- Handling Precautions for CY4501 CCG1 DVK KBA210560
- Cypress EZ-PD™ CCGx Hardware KBA204102
- Difference between USB Type-C and USB-PD KBA204033
- CCGx Programming Methods KBA97271
- Getting started with Cypress USB Type-C Products KBA04071
- Type-C to DisplayPort Cable Electrical Requirements
- Dead Battery Charging Implementation in USB Type-C Solutions KBA97273
- Termination Resistors Required for the USB Type-C Connector – KBA97180
- VBUS Bypass Capacitor Recommendation for Type-C Cable and Type-C to Legacy Cable/Adapter Assemblies – KBA97270
- Need for Regulator and Auxiliary Switch in Type-C to DisplayPort (DP) Cable Solution KBA97274
- Need for a USB Billboard Device in Type-C Solutions KBA97146
- CCG1 Devices in Type-C to Legacy Cable/Adapter Assemblies - KBA97145
- Cypress USB Type-C Controller Supported Solutions KBA97179
- Termination Resistors for Type-C to Legacy Ports KBA97272
- Handling Instructions for CY4502 CCG2 Development Kit KBA97916
- Thunderbolt™ Cable Application Using CCG3 Devices -KBA210976
- Power Adapter Application Using CCG3 Devices KBA210975
- Methods to Upgrade Firmware on CCG3 Devices KBA210974
- Device Flash Memory Size and Advantages KBA210973
- Applications of EZ-PD[™] CCG5 KBA210739

Application Notes

 AN96527 - Designing USB Type-C Products Using Cypress's CCG1 Controllers

- AN95615 Designing USB 3.1 Type-C Cables Using EZ-PD™ CCG2
- AN95599 Hardware Design Guidelines for EZ-PD™ CCG2
- AN210403 Hardware Design Guidelines for Dual Role Port Applications Using EZ-PD™ USB Type-C Controllers
- AN210771 Getting Started with EZ-PD™ CCG4

Reference Designs

- EZ-PD™ CCG2 Electronically Marked Cable Assembly (EMCA) Paddle Card Reference Design
- EZ-PD™ CCG2 USB Type-C to DisplayPort Cable Solution
- CCG1 USB Type-C to DisplayPort Cable Solution
- CCG1 USB Type-C to HDMI/DVI/VGA Adapter Solution
- EZ-PD™ CCG2 USB Type-C to HDMI Adapter Solution
- CCG1 Electronically Marked Cable Assembly (EMCA) Paddle Card Reference Design
- CCG1 USB Type-C to Legacy USB Device Cable Paddle Card Reference Schematics
- EZ-USB GX3 USB Type-C to Gigabit Ethernet Dongle
- EZ-PD[™] CCG2 USB Type-C Monitor/Dock Solution
- CCG2 20W Power Adapter Reference Design
- CCG2 18W Power Adapter Reference Design
- EZ-USB GX3 USB Type-A to Gigabit Ethernet Reference Design Kit

Kits

- CY4501 CCG1 Development Kit
- CY4502 EZ-PD™ CCG2 Development Kit
- CY4531 EZ-PD CCG3 Evaluation Kit
- CY4541 EZ-PD™ CCG4 Evaluation Kit

Datasheets

- CCG1 Datasheet: USB Type-C Port Controller with Power Delivery
- CYPD1120 Datasheet: USB Power Delivery Alternate Mode Controller on Type-C
- CCG2: USB Type-C Port Controller Datasheet
- CCG3: USB Type-C Controller Datasheet

Document History Page

Document Title: EZ-PD™ CCG5C, USB Type-C Port Controller Document Number: 002-23803							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	6164669	SUDH	05/17/2018	New data sheet.			
*A	6271142	SUDH	08/02/2018	Changed status from Advance to Preliminary.			
				Updated General Description (description).			
				Updated Features:			
				Updated Type-C and USB-PD Support (description).			
				Updated Power System Overview (description).			
				Updated Pinouts:			
				Table 2: updated description for pin 31.			
				Updated Application Diagram:			
				Updated Figure 6.			
				Updated Electrical Specifications:			
				Updated Absolute Maximum Ratings:			
				Table 7: Added ESD_HBM_SBU parameter.			
				Updated System Resources:			
				Updated VCONN Switch:			
				Table 38: Updated "Max" column for I _{OCP} parameter.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB Type-C™ Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely responsible ensuring the compliance of any modifications you make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented to Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not l

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

CYPD5126-40LQXIT