DATASHEET

6 PIN DIP SCHMITT TRIGGER PHOTOCOUPLER H11LX Series

Features:

- High data rate, 1MHz typical (NRZ)
- Free from latch up and oscillation throughout voltage and temperature ranges.
- Microprocessor compatible drive
- Logic compatible output sinks 16mA at 0.4V maximum
- · Guaranteed on/off threshold hysteresis
- Wide supply voltage capability, compatible with all popular logic systems
- High isolation voltage between input and output (Viso=5000 V rms)
- Compact dual-in-line package
- Pb free and RoHS compliant.
- UL approved (No. E214129)
- VDE approved (No. 132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CSA approved

Description

The H11LX series of devices each consist of a GaAs infrared emitting diode optically coupled a high speed integrated circuit detector. The output detector incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping.

The devices are in a 6-pin DIP package and available in wide-lead spacing and SMD option.

Applications

- Logic to logic isolator
- Programmable current level sensor
- Line receiver eliminate noise and transient problems
- AC to TTL conversion square wave shaping
- Digital programming of power supplies
- Interfaces computers with peripherals

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. V_O
- 5. GND
- $6. \ V_{CC}$

Truth Table			
Input	Output		
Н	L		
L	Н		

Absolute Maximum Ratings (Ta=25℃)

	Parameter	Symbol	Rating	Unit
Input	Forward current	l _F	60	mA
	Reverse voltage	V _R	6	V
	Power dissipation	P _D	120	mW
Output	V ₄₅ Allowed Range	Vo	0 to 16	V
	V ₆₅ Allowed Range	V _{CC}	3 to 16	V
	Output Current	Ι _ο	50	mA
	power dissipation	P _D	150	mW
Total powe	r dissipation	P _{tot}	250	mW
Isolation v	oltage	V _{iso}	5000	V rms
Operating temperature		T _{opr}	-55~+100	°C
Storage te	mperature	T _{stg}	-55~+150	°C
Soldering temperature *2		T _{sol}	260	°C

Notes:

*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2 & 3 are shorted together, and pins 4, 5 & 6 are shorted together.

*2 For 10 seconds

Electro-Optical Characteristics (Ta=25°C unless specified otherwise)

Input							
Parameter		Symbol	Min.	Тур.*	Max.	Unit	Condition
Forward Volt	age	V _F	-	1.15	1.5	V	I _F = 10mA
Reverse Cur	rent	I _R	-	-	10	μA	$V_R = 5V$
Input capacit	ance	CJ	-	-	100	pF	V=0, f=1MHz
Output							
Par	ameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Operation Vo	Itage Range	V _{CC}	3	-	15	V	
Supply Curre	ent	I _{CC(off)}	-	1.6	5	mA	I _F =0mA, Vcc=5V
Output Curre	nt, High	I _{OH}	-	-	100	μA	I _F =0mA, Vcc=Vo=15V
Isolation Res	istance	R _{ISO}	10 ¹¹	-	-	Ω	V _{I-O} =500VDC
Transfer Cl	naracteristics						
Pa	rameter	Symbol	Min	Тур.	Max.	Unit	Condition
Supply Curre	ent	I _{CC(on)}	-	1.6	5	mA	I _F =10mA, Vcc=5V
Output Volta	ge .low	V _{OL}	-	-	0.4	V	Vcc=5V, $I_F=I_{Fon}(max.)$, R _L =270 Ω
Turn on	H11L1	I _{Fon}	-	-	1.6	mA	
Threshold Current ¹	H11L2		-	-	10		Vcc=5V, R _L =270 Ω
Current	H11L3		-	-	5		
Turn off Thre	shold Current	I _{Foff}	-	1	-	mA	Vcc=5V, RL=270 Ω
Hysteresis R	atio	I _{Foff} /I _{Fon}	0.5	-	0.9		Vcc=5V, R _L =270 Ω
Turn on Time)	t _{on}	-	-	4	$\mu{f S}$	
Fall Time		t _r	-	0.1	-	$\mu{f S}$	Vcc=5V,
Turn off Time		t _{off}	-	-	4	$\mu{f S}$	- I _F =I _{Fon} , R _L =270 Ω
Rise Time		t _r	-	0.1	-	$\mu{f S}$	_
Data Rate			-	1	-	MHz	

* Typical values at $T_a = 25 \degree C$

¹. Max. $I_{F(ON)}$ is the maximum current required to trigger the output. For examples, a 1.6mA maximum trigger current would require the LED to be driven at a current greater than 1.6mA to guarantee the device will turn on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 60mA.

Typical Electro-Optical Characteristics Curves

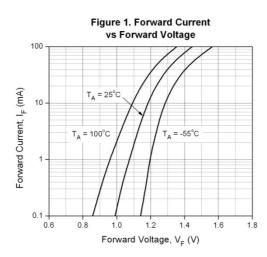
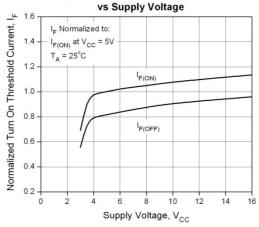
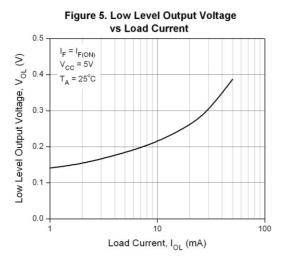




Figure 3. Turn On Threshold Current

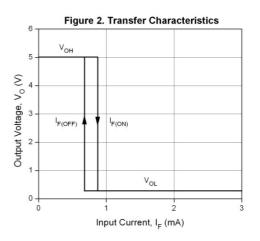
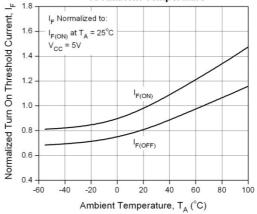
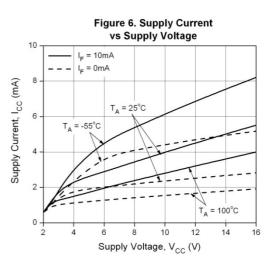




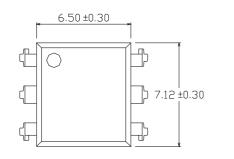
Figure 4. Turn On Threshold Current vs Ambient Temperature

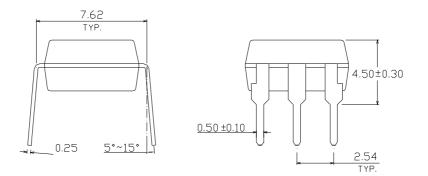
Figure 7. Switching Time Test Circuit & Waveforms

Order Information

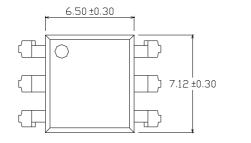
Part Number

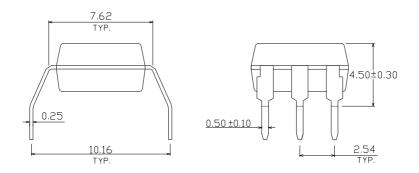
H11LXY(Z)-V

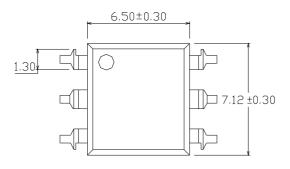

Note

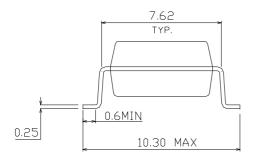

- X Y = Part No. for 1, 2 or 3
- = Lead form option (S, S1, M or none)
- Ż = Tape and reel option (TA, TB or none).
- = VDE (optional)

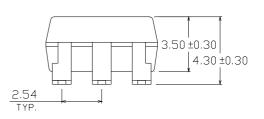
Option	Description	Packing quantity
None	Standard DIP-6	65 units per tube
М	Wide lead bend (0.4 inch spacing)	65 units per tube
S + TA	Surface mount lead form + TA tape & reel option	1000 units per reel
S + TB	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 + TA	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 + TB	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel

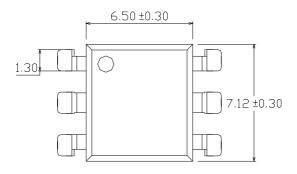

Package Dimension (Dimensions in mm)

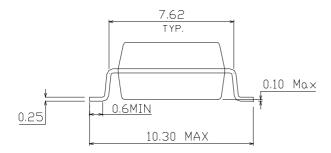

Standard DIP Type

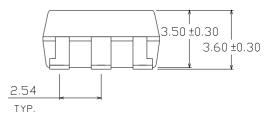

Option M Type



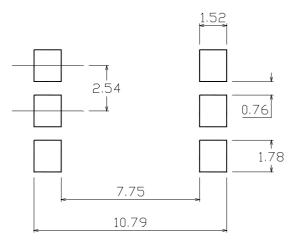


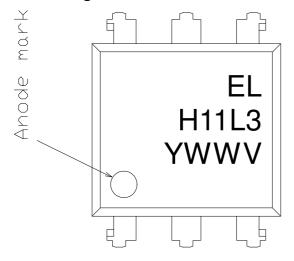

Option S Type



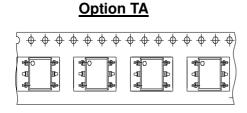


Option S1 Type

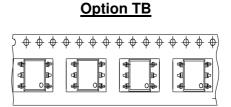




Recommended pad layout for surface mount leadform

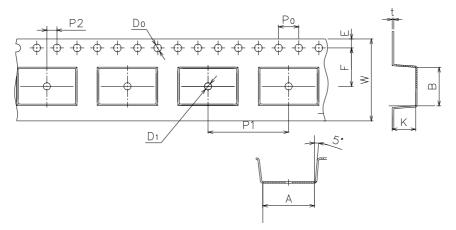

Device Marking

Notes


EL	denotes Everlight
H11L3	denotes Device Number
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code
V	denotes VDE (optional)

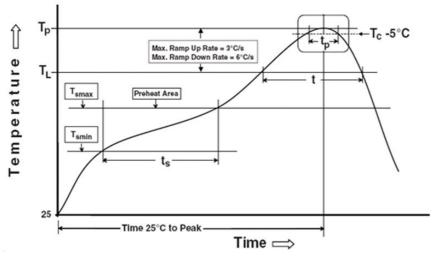
Tape & Reel Packing Specifications

Direction of feed from reel


\square

Direction of feed from reel

Tape dimensions



Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	7.5±0.1	1.5±0.1	1.5+0.1/-0	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	к
Dimension(mm)	4.0±0.15	12±0.1	2.0±0.1	0.35±0.03	16.0±0.2	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T _{smin})	150 ℃
Temperature max (T _{smax})	200 °C
Time $(T_{smin} \text{ to } T_{smax})$ (t_s)	60-120 seconds
Average ramp-up rate $(T_{smax}$ to $T_{p})$	3 °C/second max
Other	
Liquidus Temperature (T _L)	217 ℃
Time above Liquidus Temperature (t $_{L}$)	60-100 sec
Peak Temperature (T _P)	260 <i>°</i> C
Time within 5 $^{\circ}\!\mathrm{C}$ of Actual Peak Temperature: T_P - 5 $^{\circ}\!\mathrm{C}$	30 s
Ramp- Down Rate from Peak Temperature	6℃ /second max.
Time 25 ℃ to peak temperature Reflow times	8 minutes max. 3 times

Reference: IPC/JEDEC J-STD-020D

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Everlight:

H11L1 H11L1-V H11L1M H11L1M-V H11L1S(TA) H11L1S(TA)-V H11L1S(TB) H11L1S(TB)-V H11L1S(TB)-V H11L1S1(TA) H11L1S1(TA)-V H11L1S1(TB) H11L1S1(TB)-V H11L2 H11L2-V H11L2M H11L2M-V H11L2S(TA) H11L2S(TA) H11L2S(TB) H11L2S(TB)-V H11L2S1(TA) H11L2S1(TA)-V H11L2S1(TB) H11L2S1(TB)-V H11L3 H11L3-V H11L3M H11L3M-V H11L3S(TA) H11L3S(TA)-V H11L3S(TB) H11L3S(TB)-V H11L3S1(TA) H11L3S1(TA)-V H11L3S1(TB) H11L3S1(TB)-V