J111, J112

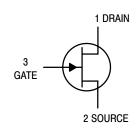
JFET Chopper Transistors

N-Channel — Depletion

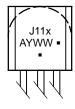
Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Drain-Gate Voltage	V_{DG}	-35	Vdc
Gate - Source Voltage	V _{GS}	-35	Vdc
Gate Current	I _G	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above = 25°C	P _D	350 2.8	mW mW/°C
Lead Temperature	TL	300	∘C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

J11x = Device Code

x = 1 or 2

A = Assembly Location

Y = Year WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

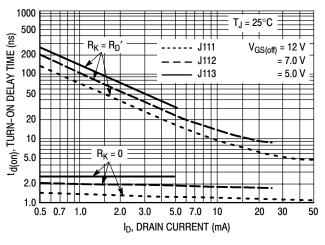
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

J111, J112

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	<u> </u>				
Gate – Source Breakdown Voltage ($I_G = -1.0 \mu Adc$)		V _{(BR)GSS}	35	-	Vdc
Gate Reverse Current (V _{GS} = -15 Vdc)		I _{GSS}	_	-1.0	nAdc
Gate Source Cutoff Voltage ($V_{DS} = 5.0 \text{ Vdc}, I_D = 1.0 \mu\text{Adc}$)	J111 J112	V _{GS(off)}	-3.0 -1.0	-10 -5.0	Vdc
Drain–Cutoff Current ($V_{DS} = 5.0 \text{ Vdc}$, $V_{GS} = -10 \text{ Vdc}$)		I _{D(off)}	_	1.0	nAdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current ⁽¹⁾ (V _{DS} = 15 Vdc)	J111 J112	I _{DSS}	20 5.0 2.0	- - -	mAdc
Static Drain–Source On Resistance (V _{DS} = 0.1 Vdc)	J111 J112	r _{DS(on)}		30 50	Ω
Drain Gate and Source Gate On–Capacitance (V _{DS} = V _{GS} = 0, f = 1.0 MHz)		C _{dg(on)} + C _{sg(on)}	_	28	pF
Drain Gate Off–Capacitance (V _{GS} = -10 Vdc, f = 1.0 MHz)		$C_{dg(off)}$	_	5.0	pF
Source Gate Off–Capacitance (V _{GS} = -10 Vdc, f = 1.0 MHz)		C _{sg(off)}	-	5.0	pF


^{1.} Pulse Width = 300 μ s, Duty Cycle = 3.0%.

ORDERING INFORMATION

Device	Package	Shipping [†]
J111RL1	TO-92	
J111RL1G	TO-92 (Pb-Free)	2000 Units / Tape & Reel
J111RLRA	TO-92	
J111RLRAG	TO-92 (Pb-Free)	2000 Units / Tape & Reel
J111RLRP	TO-92	
J111RLRPG	TO-92 (Pb-Free)	2000 Units / Tape & Reel
J112	TO-92	
J112G	TO-92 (Pb-Free)	1000 Units / Bulk
J112RL1	TO-92	
J112RL1G	TO-92 (Pb-Free)	2000 Units / Tape & Reel
J112RLRA	TO-92	
J112RLRAG	TO-92 (Pb-Free)	2000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL SWITCHING CHARACTERISTICS

1000 **I** T_J = 25°C 500 $V_{GS(off)} = 12 V$ $R_K = R_D$ = 7.0 V J112 200 J113 = 5.0 V100 TIME 50 RISE. 20 10 $R_{\kappa} = 0$ 5.0 2.0 1.0 0.5 0.7 1.0 5.0 7.0 10 20 30 50 In, DRAIN CURRENT (mA)

Figure 1. Turn-On Delay Time

Figure 2. Rise Time

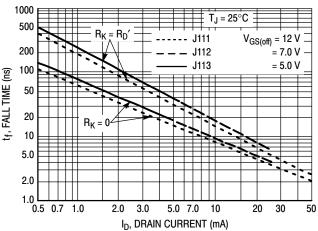


Figure 3. Turn-Off Delay Time

Figure 4. Fall Time

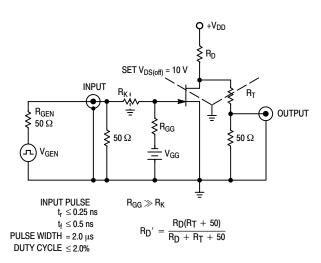
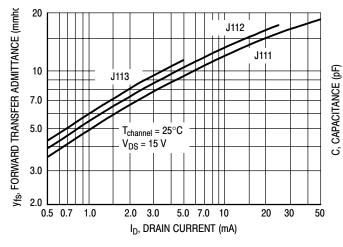


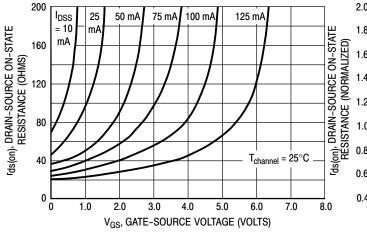
Figure 5. Switching Time Test Circuit


NOTE 1

The switching characteristics shown above were measured using a test circuit similar to Figure 5. At the beginning of the switching interval, the gate voltage is at Gate Supply Voltage ($-V_{GG}$). The Drain–Source Voltage (V_{DS}) is slightly lower than Drain Supply Voltage (V_{DD}) due to the voltage divider. Thus Reverse Transfer Capacitance (C_{rss}) or Gate–Drain Capacitance (C_{gd}) is charged to $V_{GG} + V_{DS}$.

During the turn–on interval, Gate–Source Capacitance (C_{gs}) discharges through the series combination of R_{Gen} and R_K . C_{gd} must discharge to $V_{DS(on)}$ through R_G and R_K in series with the parallel combination of effective load impedance (R'_D) and Drain–Source Resistance (r_{ds}) . During the turn–off, this charge flow is reversed.

Predicting turn—on time is somewhat difficult as the channel resistance r_{ds} is a function of the gate—source voltage. While C_{gs} discharges, V_{GS} approaches zero and r_{ds} decreases. Since C_{gd} discharges through r_{ds} , turn—on time is non—linear. During turn—off, the situation is reversed with r_{ds} increasing as C_{gd} charges.


The above switching curves show two impedance conditions; 1) R_K is equal to R_D , which simulates the switching behavior of cascaded stages where the driving source impedance is normally the load impedance of the previous stage, and 2) $R_K = 0$ (low impedance) the driving source impedance is that of the generator.

10 7.0 5.0 3.0 T_{channel} = 25°C (Cds IS NEGLIGIBLE) 2.0 1.5 1.0 0.03 0.05 0.1 0.3 0.5 1.0 3.0 5.0 10 30 V_R, REVERSE VOLTAGE (VOLTS)

Figure 6. Typical Forward Transfer Admittance

Figure 7. Typical Capacitance

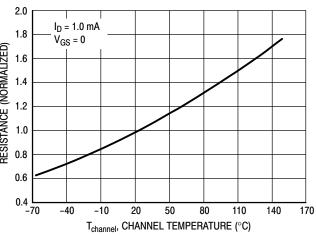
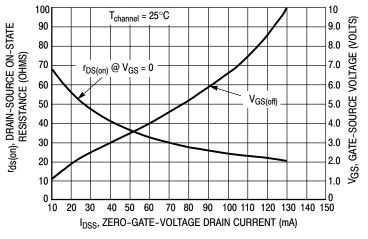
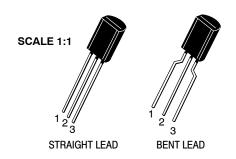



Figure 8. Effect of Gate-Source Voltage On Drain-Source Resistance

Figure 9. Effect of Temperature On Drain-Source On-State Resistance

NOTE 2

The Zero–Gate–Voltage Drain Current (I_{DSS}), is the principle determinant of other J-FET characteristics. Figure 10 shows the relationship of Gate–Source Off Voltage ($V_{GS(off)}$ and Drain–Source On Resistance ($r_{ds(on)}$) to I_{DSS} . Most of the devices will be within $\pm 10\%$ of the values shown in Figure 10. This data will be useful in predicting the characteristic variations for a given part number.


For example:

Unknown

 $r_{ds(on)}$ and V_{GS} range for an J112 $\,$

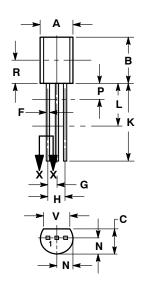
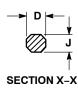

The electrical characteristics table indicates that an J112 has an I_{DSS} range of 25 to 75 mA. Figure 10, shows $r_{ds(on)}\!=\!52~\Omega$ for $I_{DSS}\!=\!25$ mA and 30 Ω for $I_{DSS}\!=\!75$ mA. The corresponding V_{GS} values are 2.2 V and 4.8 V.

Figure 10. Effect of I_{DSS} On Drain-Source Resistance and Gate-Source Voltage

TO-92 (TO-226) 1 WATT CASE 29-10 **ISSUE A**


DATE 08 MAY 2012

STRAIGHT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- 714.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS
 UNCONTROLLED.
- UNIONI HOLLEU, DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L DIMENSIONS D AND J APPLY BETWEEN DI-MENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.175	0.205	4.44	5.21	
В	0.290	0.310	7.37	7.87	
С	0.125	0.165	3.18	4.19	
D	0.018	0.021	0.46	0.53	
G	0.094	0.102	2.40	2.80	
J	0.018	0.024	0.46	0.61	
K	0.500		12.70		
N	0.080	0.105	2.04	2.66	
P		0.100		2.54	
R	0.135		3.43		
٧	0.135		3.43		

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 2		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SEATING PLANE

TO-92 (TO-226) 1 WATT CASE 29-10

ISSUE A

DATE 08 MAY 2012

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	CATHODE GATE ANODE
2.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
PIN 1. 2.	ANODE	PIN 1.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	2.	NOT CONNECTED CATHODE ANODE
PINI 1	COLLECTOR EMITTER BASE	PIN 1.	SOURCE	PIN 1.	GATE	PIN 1. 2.	EMITTER	PIN 1. 2.	MT 1
	V _{CC} GROUND 2 OUTPUT	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	2.	CATHODE ANODE GATE	2.	NOT CONNECTED ANODE CATHODE	2.	DRAIN GATE SOURCE
PIN 1. 2.	GATE DRAIN SOURCE	PIN 1.	BASE	PIN 1. 2.	RETURN INPUT OUTPUT	PIN 1. 2.	INPUT GROUND LOGIC		

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2		

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative